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Abstract. Images constitute data that live in a very high dimensional
space, typically of the order of hundred thousand dimensions. Draw-
ing inferences from correlated data of such high dimensions often be-
comes intractable. Therefore traditionally several of these problems like
face recognition, object recognition, scene understanding etc. have been
approached using techniques in pattern recognition. Such methods in
conjunction with methods for dimensionality reduction have been highly
popular and successful in tackling several image processing tasks. Of late,
the advent of cheap, high quality video cameras has generated new in-
terests in extending still image-based recognition methodologies to video
sequences. The added temporal dimension in these videos makes prob-
lems like face and gait-based human recognition, event detection, activity
recognition addressable. Our research has focussed on solving several of
these problems through a pattern recognition approach. Of course, in
video streams patterns refer to both patterns in the spatial structure
of image intensities around interest points and temporal patterns that
arise either due to camera motion or object motion. In this paper, we
discuss the applications of pattern recognition in video to problems like
face and gait-based human recognition, behavior classification, activity
recognition and activity based person identification.

1 Introduction

Pattern recognition deals with categorizing data into one of available classes. In
order to perform this, we need to first decide on a feature space to represent the
data in a manner which makes the classification task simpler. Once we decide
the features, we then describe each class or category using class conditional
densities. Given unlabeled data, the task is now to label this data (to one of
available classes) using Bayesian decision rules that were learnt from the class
conditional densities. This task of detecting, describing and recognizing visual
patterns has lead to advances in automating several tasks like optical character
recognition, scene analysis, fingerprint identification, face recognition etc.

In the last few years, the advent of cheap, reliable, high quality video cam-
eras has spurred interest in extending these pattern recognition methodologies to
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video sequences. In video sequences, there are two distinct varieties of patterns.
Spatial patterns correspond to problems that were addressed in image based pat-
tern recognition methods like fingerprint and face recognition. These challenges
exist in video based pattern recognition also. Apart from these spatial patterns,
video also provides us access to rich temporal patterns. In several tasks like activ-
ity recognition, event detection/classification, anomaly detection, activity based
person identification etc, there exists a temporal sequence in which various spa-
tial patterns present themselves. It is very important to capture these temporal
patterns in such tasks. In this paper, we describe some of the pattern recognition
based approaches we have employed for tasks including activity recognition, face
tracking and recognition, anomaly detection and behavior analysis.

2 Feature Representation

In most pattern recognition (PR) problems, feature extraction is one of the
most important tasks. It is very closely tied to pattern representation. It is
difficult to achieve pattern generalization without using a reasonably correct
representation. The choice of representation not only influences the PR approach
to a great extent, but also limits the performance of the system, depending upon
the appropriateness of the choice. For example, one cannot reliably retrieve the
yaw and pitch angles of a face assuming a planar model.

Depending on the problem at hand, the representation itself can manifest in
many different ways. Though in the case of still images, only spatial modeling
is required, one needs ways to represent temporal information also when dealing
with videos. At times, the representation is very explicit like in the form of a
geometric model. On the other hand, in a few feature based PR approaches,
the modeling part is not so explicit. To further highlight the importance of
representation, we now discuss the modeling issues related to a few problems in
video-based recognition.

2.1 Affine Appearance Model for Video-Based Recognition

Recognition of objects in videos requires modeling object motion and appearance
changes. This makes object tracking a crucial preceding step for recognition. In
conventional algorithms, the appearance model is either fixed or rapidly chang-
ing, while the motion model is a random walk model with constant variance.
A fixed appearance template is not equipped to handle appearance changes in
the video, while a rapidly changing model is susceptible to drift. All these fac-
tors can potentially make the visual tracker unstable leading to poor recognition
results. In [1], we use adaptive appearance and velocity models to stabilize the
tracker and closely follow the variations in appearance due to object motion. The
appearance is modeled as a mixture of three different models, viz., (1) object
appearance in a canonical frame (first frame), (2) slow-varying stable appear-
ance within all the past observation, and (3) the rapidly changing component
characterizing the two-frame variations. The mixture probabilities are updated
at each frame based on the observation. In addition, we use an adaptive-velocity
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Fig. 1. Affine appearance model for tracking

model, where the adaptive velocity is predicted using a first-order linear approx-
imation based on appearance changes between the incoming observation and the
previous configuration.

The goal here is to identify a region of interest in each frame of the video
and not the 3D location of the object. Moreover, we believe that the adaptive
appearance model can easily absorb the appearance changes due to out-of-plane
pose and illumination changes. Therefore, we use a planar template and al-
low affine transformations only. Fig. 1 shows an example where tracker using
the described representation is used for tracking and recognizing a face in a
video.

2.2 3D Feature Graphs

Affine model suffices for locating the position of the object on the image, but it
does not have the capability to annotate the 3D configuration of the object at
each time instant. For example, if the goal is to utilize 3D information for face
recognition in video, the described affine representation will not be adequate.
Accordingly, [2] uses a cylindrical model with elliptic cross-section to perform
3D face tracking and recognition. The curved surface of the cylinder is divided
into rectangular grids and the vector containing the average intensity values for
each of the grids is used as the feature. As before, appearance model is a mixture
of the fixed component (generated from the first frame) and dynamic component
(appearance in the previous frame). Fig. 2 shows a few frames of a video with
the cylinder superimposed on the image displaying the estimated pose.

Fig. 2. Estimated 3D pose of a face using a cylindrical model for face recognition in
videos

Another possibility is to consider using a more realistic face model (e.g., 3D
model of an average face) instead of a cylinder. Such detailed 3D representa-
tions make the initialization and registration process difficult. In fact, [3] shows
experiments where perturbations in the model parameters adversely affect the
tracking performance using a complex 3D model, whereas the simple cylindrical
model is robust to such perturbations. This highlights the importance of the
generalization property of the representation.
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2.3 Representations for Gait-Based Recognition

Gait is a very structured activity with certain states like heel strike, toe off re-
peating themselves in a repetitive pattern. Recent research suggests that the gait
of an individual might be distinct and therefore can be used as a biometric for
person identification. Typical representations for gait-based person identification
include use of the entire binary silhouette [4][5], sparser representations like the
width vector [5] or shape of the outer contour [6]. 3D part based descriptions of
human body [7] is also a viable representation for gait analysis.

2.4 Behavior Models for Tracking and Recognition

Statistical modeling of the motion of the objects enables us to capture the tem-
poral patterns in video. Modeling such behaviors explicitly is helpful in accurate
and robust tracking. Typically each object could display multiple behaviors. We
use Markovian models (on low level motion states) to represent each behavior
of the object. This creates a mixture modeling framework for the motion of the
object. For illustration, we will discuss the manner in which we modeled the
behavior of insects for the problem of tracking and behavior analysis of insects.
A typical Markov model for a special kind of dance of a foraging bee called the
waggle dance is shown in Fig. 3.
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Fig. 3. A Bee performing waggle dance: The Shape model for tracking and the Behavior
model to aid in Activity analysis are also shown

3 Particle Filtering for Object Recognition in Video

We have so far dealt with issues concerned with the representation of patterns
in video and dealt with how to represent both spatial and temporal patterns in
a manner that simplifies identification of these patterns. But, once we choose
a certain set of representations for spatial and motion patterns, we need infer-
ence algorithms for estimating these parameters. One method to perform this
inference is to cast the problem of estimating the parameters as a energy min-
imization problem and use popular methods based on variational calculus for
performing this energy minimization. Examples of such methods include gra-
dient descent, simulated annealing, deterministic annealing and Expectation-
Maximization. Most such methods are local and hence are not guaranteed to
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converge to the global optimum. Simulated annealing is guaranteed to con-
verge to the global optimum if proper annealing schedule is followed but this
makes the algorithm extremely slow and computationally intensive. When the
state-observation description of the system is linear and Gaussian, estimating
the parameters can be performed using the Kalman filter. But the design of
Kalman filter becomes complicated for intrinsically non-linear problems and is
not suited for estimating posterior densities that are non-Gaussian. Particle fil-
ter [8][9] is a method for estimating arbitrary posterior densities by representing
them with a set of weighted particles. We will precisely state the estimation
problem first and then show how particle filtering can be used to solve such
problems.

3.1 Problem Statement

Consider a system with parameters θ. The system parameters follow a certain
temporal dynamics given by Ft(θ, D, N). (Note that the system dynamics could
change with time.)

SystemDynamics : θt = Ft(θt−1, Dt, Nt) (1)

where, N is the noise in the system dynamics. The auxiliary variable D indexes
the set of motion models or behaviors exhibited by the object and is usually
omitted in typical tracking applications. This auxiliary variable assumes impor-
tance in problems like activity recognition or behavioral analysis (Section 4.3).

Each frame of the video contains pixel intensities which act as partial obser-
vations Z of the system state θ.

ObservationEquation : Zt = G(θt, I, Wt) (2)

where, W represents the observation noise. The auxiliary variable I indexes the
various object classes being modeled, i.e., it represents the identity of the object.
We will see an example of the use of this in Section4.

The problem of interest is to track the system parameters over time as and
when the observations are available. Quantitatively, we are interested in esti-
mating the posterior density of the state parameters given the observations i.e.,
P (θt/Z1:t).

3.2 Particle Filter

Particle filtering [8][9] is an inference technique for estimating the unknown dy-
namic state θ of a system from a collection of noisy observations Z1:t. The particle
filter approximates the desired posterior pdf p(θt|Z1:t) by a set of weighted par-
ticles {θ

(j)
t , w

(j)
t }M

j=1, where M denotes the number of particles. The interested
reader is encouraged to read [8][9] for a complete treatment of particle filtering.
The state estimate θ̂t can be recovered from the pdf as the maximum likelihood
(ML) estimate or the minimum mean squared error (MMSE) estimate or any
other suitable estimate based on the pdf.
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3.3 Tracking and Person Identification

Consider a gallery of P objects. Supposing the video contains one of these P
objects. We are interested in tracking the location parameters θ of the object
and also simultaneously recognize the identity of the object. For each object i,
the observation equation is given by Zt = G(θt, i, Wt). Suppose we knew that
we are tracking the pth object, then, as usual, we could do this with a particle
filter by approximating the posterior density P (θt/Z1:t, p) as a set of M weighted
particles {θ

(j)
t , w

(j)
t }M

j=1. But, if we did not know the identity of the object we
are tracking, then, we need to estimate the identity of the object also. Let us
assume that the identity of the object remains the same throughout the video,
i.e., It = p, where p = {1, 2, ...P}. Since the identity remains a constant over
time, we have

P (Xt, It = i/Xt−1, It−1 = j) = P (Xt/Xt−1)P (It = i/It−1 = j) (3)

=
{

0 if i �= j;
P (Xt/Xt−1) if i = j; j = {1, 2, ...P}

As was discussed in the previous section, we can approximate the posterior den-
sity P (Xt, I = p/Z1:t) using a Mp weighted particles as {θ

(j)
t,p , w

(j)
t,p}j=1:Mp . We

maintain such a set of Mp particles for each object p = 1, 2, ..P . Now the set
of weighted particles {θ

(j)
t,p , w

(j)
t,p}p=1:P

j=1:Mp
with weights such that

∑
p=1:P

∑
j=1:Mi

w
(j)
t,p = 1, represents the joint distribution P (θt, I/Z1:t). MAP and MMSE esti-

mates for the tracking parameters θ̂t can be obtained by marginalizing the distri-
bution P (θt, I/Z1:t) over the identity variable. Similarly, the MAP estimate for
the identity variable can be obtained by marginalizing the posterior distribution
over the tracking parameters. Refer to [10] for the details of the algorithm and
the necessary and sufficient conditions for which such a model is valid.

3.4 Tracking and Behavior Identification

Simultaneous tracking and behavior/activity analysis can also be performed in
a similar manner by using the auxiliary variable D in a manner very similar to
performing simultaneous tracking and verification. Refer to [11] for details about
the algorithm. Essentially, a set of weighted particles {θ

(j)
t , w

(j)
t , D

(j)
t } is used to

represent the posterior probability distribution P (θt, Dt/Z1:t). Inferences about
the tracking parameters θt and the behavior exhibited by the object Dt can be
made by computing the relevant marginal distribution from the joint posterior
distribution. Some of the tracking and behavior analysis results for the problem
of analyzing the behaviors of bees in a hive are given in a later section.

4 Pattern Recognition in Video: Working Examples

In this section, we describe a few algorithms to tackle video-based pattern recog-
nition problems. Most of these algorithms make use of the material described so
far in this paper, in some form or the other.
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4.1 Visual Recognition Using Appearance-Adaptive Models

This work [10] proposes a time series state space model to fuse temporal informa-
tion in a video, which simultaneously characterizes the motion and identity. As
described in the previous section, the joint posterior distribution of the motion
vector and the identity variable is estimated at each time instant and then prop-
agated to the next time instant. Marginalization over the motion state variables
yields a robust estimate of the posterior distribution of the identity variable. The
method can be used for both still-to-video and video-to-video face recognition. In
the experiments, we considered only affine transformations due to the absence of
significant out-of-plane rotations. A time-invariant first-order Markov Gaussian
model with constant velocity is used for modeling motion transition. Fig. 4 shows
the tracking output in a outdoor video. [1] incorporates appearance-adaptive
models in a particle filter to perform robust visual tracking and recognition. Ap-
pearance changes and changing motion is handled adaptively in the manner as
described in Section 2.1. The simultaneous recognition is performed by including
the identity variable in the state vector as described in Section 3.3.

Fig. 4. Example tracking results using the approach in [10]

4.2 Gait-Based Person Identification

In [12], we explored the use of the width vector of the outer contour of the
binarized silhouette as a feature for gait representation. Matching two sequences
of width vectors was performed using the Dynamic Time Warping (DTW). The
DTW algorithm is based on dynamic programming and aligns two sequences by
computing the best warping path between the template and the test sequence. In
[5], the entire binary image of the silhouette is used as a feature. The sequence of
binary silhouette images were modeled using a Hidden Markov Model (HMM).
States of the HMM were found to represent meaningful physical stances like heel
strike, toe off etc. The observation probability of a test sequence was used as a
metric for recognition experiments. Results using both the HMM and DTW were
found to be comparable to the state of the art gait-based recognition algorithms.
Refer to [12] and [5] for details of the algorithms.

4.3 Simultaneous Tracking and Behavior Analysis of Insects

In [11], we present an approach that will assist researchers in behavioral re-
search study and analyze the motion and behavior of insects. The system must
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also be able to detect and model abnormal behaviors. Such an automated sys-
tem significantly speeds up the analysis of video data obtained from experi-
ments and also prevents manual errors in the labeling of data. Moreover, pa-
rameters like the orientation of the various body parts of the insects(which is
of great interest to the behavioral researcher) can be automatically extracted
in such a framework. Each behavior of the insect was modeled as a Markov
process on low-level motion states. The transition between behaviors was mod-
eled as another Markov process. Simultaneous tracking and behavior analy-
sis/identification was performed using the techniques described in Section 3.4.
Bees were modeled using an elliptical model as shown in Fig. 3. Three behaviors
of bees Waggle Dance, Round Dance and Hovering bee were modeled. Devia-
tions from these behaviors were also identified and the model parameters for
the abnormal behaviors were also learnt online. Refer [11] for the details of the
approach.

4.4 Activity Recognition by Modeling Shape Sequences

Human gait and activity analysis from video is presently attracting a lot of at-
tention in the computer vision community. [6] analyzed the role of two of the
most important cues in human motion- shape and kinematics using a pattern
recognition approach. We modeled the silhouette of a walking person as a se-
quence of deforming shapes and proposed metrics for comparing two sequences of
shapes using a modification of the Dynamic Time Warping algorithm. The shape
sequences were also modeled using both autoregressive and autoregressive and
moving average models. The theory of subspace angles between linear dynamical
systems was used to compare two sets of models. Fig. 5 depicts a graphical vi-
sualization of performing gait recognition by comparing shape sequences. Refer
to [6] for the details of the algorithm and extended results.

Fig. 5. Graphical illustration of the sequence of shapes obtained during gait
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4.5 Activity Modeling and Anomaly Detection

In the previous subsection, we described an approach for representing an activ-
ity as a sequence of shapes. But, when new activities are seen, then we need
to develop approaches to detect these anomalous activities. The activity model
under consideration is a continuous state HMM. An abnormal activity is de-
fined as a change in the activity model, which could be slow or drastic and
whose parameters are unknown. Drastic changes can be easily detected using
the increase in tracking error or the negative log of the likelihood of current
observation given past (OL). But slow changes usually get missed. [13] proposes
a statistic for slow change detection called ELL (which is the Expectation of
negative Log Likelihood of state given past observations) and shows analytically
and experimentally the complementary behavior of ELL and OL for slow and
drastic changes. We have also established the stability (monotonic decrease) of
the errors in approximating the ELL for changed observations using a particle
filter that is optimal for the unchanged system. Asymptotic stability is shown
under stronger assumptions. Finally, it is shown that the upper bound on ELL
error is an increasing function of the rate of change with increasing deriva-
tives of all orders, and its implications are discussed. Fig. 6 shows the tracking
error, Observation likelihood and the ELL statistic for simulated observation
noise.

Fig. 6. ELL, Tracking error (TE) and Observation Likelihood (OL) plots: Simulated
Observation noise. Notice that the TE and OL plots look alike.

5 Conclusions

We have presented very brief descriptions of some of the approaches based on
pattern recognition to various problems like tracking, activity modeling, be-
havior analysis and abnormality detection. The treatment in this paper is not
comprehensive and the interested readers are encouraged to refer the respective
references and references therein for details on each of these approaches.
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